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Quantifying the Role of Vocabulary Knowledge in
Predicting Future Word Learning

Nicole M. Beckage

Abstract—Can we predict the words a child is going to learn
next given information about the words that a child knows now?
Do different representations of a child’s vocabulary knowledge
affect our ability to predict the acquisition of lexical items for
individual children? Past research has often focused on popu-
lation statistics of vocabulary growth rather than prediction of
words an individual child is likely to learn next. We consider
a neural network approach to predict vocabulary acquisition.
Specifically, we investigate how best to represent the child’s cur-
rent vocabulary in order to accurately predict future learning.
The models we consider are based on qualitatively different
sources of information: descriptive information about the child,
the specific words a child knows, and representations that aim
to capture the child’s aggregate lexical knowledge. Using longi-
tudinal vocabulary data from children aged 15-36 months, we
construct neural network models to predict which words are
likely to be learned by a particular child in the coming month.
Many models based on child-specific vocabulary information out-
perform models with child information only, suggesting that the
words a child knows influence prediction of future language
learning. These models provide an understanding of the role of
current vocabulary knowledge on future lexical growth.

Index Terms—Cognitive development, language acquisition,
lexical acquisition, neural networks, word learning.

I. INTRODUCTION

HAT role does the current lexical knowledge of a child

have in accurately predicting future word acquisition?
If all children learn in approximately the same way, knowing
the specific words in a child’s vocabulary should not improve
accuracy at predicting what words the specific child is likely
to learn next. Alternatively, if the idiosyncratic words a child
knows at a given time influence the words that child is going
to learn next, this would provide strong evidence that cur-
rent lexical knowledge influences future lexical growth. Even
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assuming a child’s vocabulary is predictive of the words a child
is likely to learn next, it is possible that the word learned itself
is a side-effect of learning a relevant feature or category in the
world. If this is the case, the knowledge of the specific lexical
item may be less predictive than the concepts or features it
encapsulates. For example, a child might learn the word dog;
she might have learned that her household pet is the only dog,
or that only animals walked around on a leash in her neigh-
borhood are dogs, or instead she could be learning that dogs
have four legs, a tail, etc. and that dogs are somehow differ-
ent than cats. All of semantic information related to the word
dog capture different types of language knowledge that a child
might use to learn new words in the future.

In this paper, we explore how various representations of a
child’s current vocabulary predict that same child’s future lex-
ical acquisition. We focus on high level features of the child
and the child’s lexicon specifically to zoom in on what the
role of lexical structure is on future lexical acquisition. We
acknowledge that there are many forces that could influence
vocabulary growth and language acquisition besides the com-
position of a child’s lexicon. Here we focus on the ability
to use language knowledge to predict future lexical growth.
We consider various vector representations that aim to capture
a child’s language knowledge and evaluate these representa-
tions on their ability to predict future acquisition trajectories
at the level of an individual child to model lexical growth.
We compare the usefulness of different vector representations
by comparing predictive performance of single-layer neural
networks, evaluating the models on their ability to predict the
words a child will learn one month into the future.

We tackle the problem of lexical acquisition in toddlers
because language learning is one of the first complex cog-
nitive tasks humans undertake, and therefore a great way to
model learning more generally. Infants start producing their
earliest words around 12 months of age and within only a
few months, young children have hundreds of words. Shortly
thereafter, young children begin to construct sentences with
complex ideas and grammatical structure. Despite how quickly
this learning comes online, much of the language acquisition
process is still challenging to explain—particularly how chil-
dren represent and access language knowledge, which is the
focus of this modeling work. The approach of machine learn-
ing to model complex processes, such as language acquisition,
can provide novel insight into the learning and represen-
tation of language. We focus particularly on how different
vocabulary representations of a young child’s lexicon increase
predictive accuracy. Pairing powerful statistical learning tools
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with observational acquisition data, we can isolate differences
in individual learning in early acquisition and quantify the
role of current vocabulary knowledge, and how the repre-
sentation of that knowledge influences the ability to predict
future vocabulary growth. We argue that these analyses can
be informative in suggesting the relative importance of dif-
ferent factors in word learning, leading to specific predictions
that could be tested empirically.

Currently, a toddler’s lexical knowledge is often measured
as the number of words they know, given the child’s age
and sex [8], [10], [33]. While there is strong evidence that
this count of the number of words is useful in assessing lan-
guage ability, it is unclear that this number alone is useful and
informative enough to aid in predicting future acquisition. In
our age range of the individual children of interest, the most
commonly used measure of vocabulary size is the MacArthur-
Bates Communicative Development Inventory (CDI). Parents
indicate which of a fixed set of about 700 words their child can
say. From this vocabulary report, developmental psychologists
assign each child a CDI percentile that compares the child’s
CDI vocabulary size to that of their peers. This percentile
value is used to flag children who are learning language at
slower rates than their peers. These children, classically called
late talkers, are important to monitor because many of them
will continue to have language learning difficulties [15], [33].
Sometimes these early language difficulties will persist and
be reflected in reading and other difficulties in academic set-
tings [11]. However, not all children who have a low CDI
percentile as toddlers go on to have lasting language difficul-
ties, and to date, it is impossible to accurately predict which
toddlers will have persistent difficulties and which will catch
up. By exploring different types of language representations
in predicting future acquisition, we may help uncover rela-
tionships between current language and future learning that
could help with diagnostic assessment, providing a quantita-
tive tool to help distinguish children who are simply learning
language at a slower rate than their peers and those children
who are at risk for these language-specific delays to manifest
as other types of cognitive difficulties, such as specific lan-
guage impairment (for more information on SLI, see [18]).
The relationship between lexical representation and CDI per-
centile might suggest an approach for quantifying meaningful
differences in word learning between at-risk children and their
normally developing peers. However, before these questions
can be directly studied, a working predictive model of acqui-
sition must be constructed and studied. Here we consider a
simple neural network modeling approach as an initial attempt
to tackle these issues.

Neural network models, often called connectionist mod-
els in psychology, provide a systematic way of extending
observational findings and behavioral studies of early lan-
guage learning. Single layer neural networks, while more
complex than generalized linear models, still provide inter-
pretability and insight into aspects of linguistic knowledge
that may impact future language learning. As statistical learn-
ing tools, neural networks are powerful and adaptive, capable
of modeling change over time, and dealing with noise and
uncertainty in the data. Here we use neural network models

to build predictive models of lexical acquisition. We specif-
ically explore how the representation of a child’s current
vocabulary influences our ability to accurately predict what
words a specific child will learn next. Evaluating our predictive
models on longitudinal language acquisition trajectories, we
interpret the model accuracy as evidence of the importance
of a specific type of lexical knowledge representation in early
acquisition. By understanding the influence of the representa-
tion of a childs linguistic knowledge in our models ability to
predict future acquisition, we aim to isolate the effects of the
role of lexical knowledge on the learning of individual lex-
ical items. In the larger literature of neural networks, neural
networks are essentially optimized feature detection systems,
whose training algorithms work to find the best combination
of complex features that accurately predicts the measure of
interest. In our simple neural networks, the intermediate layer
aggregates input features into representations that maximize
predictability of future language learning. By considering
only simple graphs, we allow for predictive models that are
slightly more complex than generalized linear models but
whose performance is still limited by the usefulness of the
input representation, allowing us to scientifically investigate
the effect of the representation of lexical knowledge on the
ability of these models to predict future acquisition of lexical
items for individual children. We compare model performance
as a direct means to assess the usefulness of a particular
network representation in capturing the relationship between
current lexical knowledge and future language learning for
individual children.

We first briefly review the state of the art in using neural
networks to capture aspects of language acquisition, before
turning to the methods, and detailing the longitudinal data
and vocabulary representations. Next, we discuss the neu-
ral network training and optimization. Finally, we discuss
the different predictive capacity of the various vocabulary
representations and the implications of the results.

II. PAST WORK

Neural network models, as applied to early learning, have a
long history which we review only briefly here. The interested
reader may find a more extensive review of neural networks
applied to the cognitive sciences here [4], [21] and a specific
review of semantic development here [29]. Previous research
also explores neural network approaches to link neuroscience
to early development [27] and to semantic cognition [22]. We
limit our literature review specifically to neural network mod-
els of lexical acquisition, as our prediction task aims to capture
learning of specific lexical items.

Much of the past connectionist work to model lexical
acquisition focuses on capturing infant performance on behav-
ioral learning tasks, with the goal of providing a mechanistic
explanation of language learning in children that can be
verified experimentally. For example, connectionist networks
have been used to understand the role of associative learning
on the emergence of word learning biases [7]. Work using
neural network models tasked with learning word-to-object
mappings, trained on a vocabulary of CDI words, acquires
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useful word learning biases, even though the models are not
directly rewarded for this bias, suggesting that the model
benefits from learning these biases and using them to gen-
eralize to novel word-to-object mappings. These models have
been shown to make novel predictions—about learning for
different types of categories, learning different languages, or
different language proficiency—that have subsequently been
experimentally verified in young children [S]-[7], [30].

Other examples of neural network models applied to
modeling early lexical acquisition include models capable of
capturing word confusability and age of acquisition effects [19],
and the formation and degradation of conceptual categories [22].
These, and other examples of lexical development, explain
behavior with basic mechanistic accounts of associative learn-
ing. One neural network model, which learns to map word-forms
to object referents [23] shows a mutual exclusivity bias—a pref-
erence for novel words to map to novel objects [25], even though
no training instances explicitly exhibited this bias. The model
uses this bias and associative “knowledge” of other words
to quickly and accurately learn new words, even in highly
ambiguous contexts. Another neural network model captures
the acquisition of categories. Interpreting the online learning of
the neural network, the authors provide evidence for a feedback
loop between perceptual features and linguistics labels [38]; the
linguistic labels are thought to support generalization of cate-
gories and thus facilitate learning. The model itself is able to
capitalize on the relationships between category formation and
language learning to provide structure and reinforcement, via
the feedback loop between perceptual and linguistic features,
during learning.

Unlike the work reviewed above, we do not focus on neural
networks as cognitive models. We instead use neural networks
as a means to uncover associations in the environment and lan-
guage knowledge of a child that might be relevant and even
facilitate the lexical acquisition process of young children.
Neural network models are useful tools for modeling devel-
opment because the associative learning framework allows for
different types and timescales of learning to be captured within
a single representation. This is mostly due to the ability of con-
nectionist models to incrementally learn and to have predictive
capacity even when representations are under-determined or
noisy. We leverage the robust learning of neural networks
to provide quantification of the predictive power of differ-
ent vocabulary representations in relation to future lexical
acquisition.

A key assumption to this type of data-driven neural network
model of acquisition is that there are regularities in the way in
which children learn. But the differences are also informative
and predictive. If all children learn similarly, and/or the vari-
ability is not predictive, then high-level features such as the age
of the child should be adequate in predicting lexical growth.
But if there is variability among learners that can be assessed
from vocabulary data directly, then the data-driven approach
can offer unique insights into these trends. Previous work sug-
gests that different types of learners exist and that there are
meaningful similarities in learning within these different types
of learners [15], [20], [28], [33]. For example, network analy-
sis approaches have found that not only are late talkers learning

slower than their peers, but the resulting vocabulary is less
structured than one might expect if the children were simply
learning at a slower rate [3], and in the laboratory, late talk-
ers seem to learn new words differently than their typically
developing peers [6], [36]. Assuming that there are different
types of language learners, and that the vocabulary at any time
point reflects the type of learner a particular child is, machine
learning models may provide a powerful and predictive tool
to aid with classification and diagnostics of a child’s learning
trajectory.

Many features of the language environment likely affect
learning. We note that a large body of work focuses on the
aspects of the language and linguistic environment that affects
language acquisition. Here, we instead assume that the con-
tent of the child’s vocabulary embodies much of the relevant
information about the most influential forces directing the
child’s learning trajectory. While we are agnostic as to which
specific features influence and direct learning, we do assume
that representations that accentuate relevant features will result
in an improvement in model accuracy. We thus infer that mod-
els with higher accuracy are capitalizing on representations
or aggregation methods that accentuate those aspects of the
child’s language or characteristics that are relevant to their
acquisition process. We consider the performance of various
language representations to the baseline child-feature model
to approximately quantify the influence of certain language
representations on predictions, and thus as a proxy for the rel-
evance of this type of linguistic information on the acquisition
process.

With the goal of capturing the role of a child’s current
vocabulary on future language learning, we explore different
ways of representing the child’s current vocabulary knowledge.
Our baseline model considers only features of the child, such
as their age, total vocabulary size, and CDI percentile. If all
children learn similarly, then these features should be informa-
tive and predictive of which words the child is likely to learn
approximately one month in the future. Alternatively, if the
lexical items in the vocabulary of a child captures predictive
information that influences future acquisition such as the
child’s interests in specific themes (for example, animals) or
their language environment, then knowing the semantic con-
tent of the child’s vocabulary will be helpful in predicting
future lexical acquisition.

III. METHODS
A. Longitudinal Vocabulary Data

To train and evaluate the neural network models, we use
data collected as part of a 12-month longitudinal study in the
Colunga Laboratory at the University of Colorado Boulder.
The data were collected over three cohorts. Parents and chil-
dren visited the laboratory at approximately monthly intervals
for a year. On average, children in this paper had 10.9 visits.
We included 83 monolingual children (37 female) in our cur-
rent analysis. At each visit, parents completed a vocabulary
report indicating which, of a fixed set of words, their child
produced. The parental vocabulary report was collected using
the MacArthur-Bates CDI [8] for children between 16 and 30
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age | sex voc. sz | dog | house | ... | zoo
16.2 F 32 0 0 0
kid A | 17.1 F 49 1 0 0
18.9 F 132 1 0 1
193 | M 257 1 0 0
kidB | 205 | M 345 1 1 0
Fig. 1. Example of longitudinal CDI data used as untransformed input and

output of the neural network. Note that only the productive knowledge of the
individual words is the output the neural network models.

months. Our modeling work includes 677 of the CDI's 680
early learned words. Three words [grass, slide (noun), and
work (noun)] were excluded from our analysis due to miss-
ing data. Fig. 1 includes an example of what the CDI data
look like. Across all recruitment phases we have a total of
908 CDI vocabulary reports which form 825 CDI vocabulary
snapshots (i.e., two sequential vocabulary reports). We define a
CDI snapshot as a sequential set of CDI’s where the first CDI
is the (transformed) input to the neural network and the second
CDI is the output (target) vocabulary. In all cases, our model
is given information pertaining the content of the first CDI
report in the snapshot and is tasked with predicting the vocab-
ulary as measured by the later CDI. While the time between
CDIs is usually one month, there is some variability due to
scheduling issues. We attempt to control for this variability
by including the time between CDIs as an input feature to all
neural network models.

The longitudinal study represents many different types of
language learners with the age of the children ranging from
15.4 to 32 months of age during the course of the study. The
median age of children when their first CDI was collected
is 16.4 months. We also have a full range of language ability
represented, as estimated via the CDI percentile measure. This
measure is calculated based on the size of a child’s productive
vocabulary as compared to the child’s age-matched peers. The
range of the CDI percentiles represented in the longitudinal
snapshots is between 3 and 99, with a median percentile of
54. We note that recruitment of participants in the longitudinal
study was biased to over-represent late talkers, or children in
the bottom 20th percentile, as late-talkers are a population of
particular interest in language acquisition research.

B. Neural Network Training

Neural networks were constructed and fit using Torch7, a
scientific computing framework for luaJIT. Models are trained
via stochastic gradient descent and have a single hidden layer,
optimized in size for each trained model. The network archi-
tecture had a variable number of input features based on the
vocabulary representation, a single hidden layer and a logistic
transformation on the output layer such that the probability of
learning a specific word was returned by the model. Learning
rate (), number of hidden units (hu), batch size, number
of epochs until learning rate is effectively zero (o decay),
and momentum () were optimized via step-wise optimization
(e.g., learning rate was optimized first, followed by the number
of hidden units etc. with momentum optimized last.) Table I
shows the neural network hyper-parameters for each model.

TABLE I
HYPER-PARAMETER FOR NEURAL NETWORK MODELS. («) IS THE
LEARNING RATE, hu IS HIDDEN UNITS, Aa ~ 0 IS EPOCHS
WHEN « IS NEARLY 0, (m) IS MOMENTUM AND avg? IS
WHETHER WORD FEATURES WERE AVERAGED. INPUT +6
SHOWS INCLUSIONS OF CDI CHILD FEATURES

model [ input « hu batch Aa=x0 m avg?
CDI child 6 03 800 25 500 .7

CDI word | 677+6 0.8 500 25 200 .9

Semantic 30+6 0.7 300 50 500 5 T
Phonology 37 0.5 200 10 400 .7 F
CDI label 22+6 0.8 500 25 200 7 T
Word2Vec 200 0.2 500 25 650 .7 F

Dropout rate of the hidden units was fixed to 0.5. We note that
there may be better neural network architectures and gradient
decent parameters that could be uncovered by more sophisti-
cated optimization procedures but the greedy-search procedure
was effective for the comparison of interest. During training,
the gradients are only back-propagated for those words that are
learned by the model, thus the model is not penalized, nor are
the weights updated, for incorrect predictions on words that
are already known by the child.

Most of the step-wise optimization procedure was used
to determine the neural network architecture that best suited
the particular representation of current lexical knowledge.
However, some of the parameters directly affected the update
of the internal model weights. We review them quickly here as
this provides increased interpretability to model optimization.
Learning rate decay allows models to quickly learn initial pat-
terns but also adapt later in training to more nuanced patterns
and negates the need to determine stopping criterion since
the learning rate asymptotes to zero. Momentum ensures each
update is a combination of the current error gradient and the
error gradient accumulated from previous time steps. Dropout
was used to minimize overfitting and was fixed at 0.5; so dur-
ing training, the model only had access to an expected 50%
of the hidden units. During model evaluation, all hidden units
were available. Overall parameter selections (including input
feature size) are presented in Table I. We note that optimization
happened via fivefold cross-validation at the child level such
that all data for a particular child was in the same fold. Thus,
model performance is based not only on generalization to
unseen vocabulary representations but also to unseen children.

IV. NEURAL NETWORK MODELS

We ask two main questions with this paper.

1) To what extent does the vocabulary knowledge of a child
increases predictability of which words the child will
learn next? It is possible that children generally learn
words in a certain order, and that knowing the spe-
cific lexicon of a child is not helpful for our predictive
models.

2) Assuming the set of words a child knows is predictive of
the words they will learn next, how can we best represent
the lexical knowledge of a child to our simple neural
networks?

Different representations of a child’s vocabulary knowledge
may allow for a more robust and accurate predictive model of
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the words the child is likely to learn next. The performance
of our models with various definitions of lexical knowledge
may provide insight into the types of information that is
guiding language acquisition. We use two broad types of rep-
resentations to capture a child’s lexicon. First, we explore
representing vocabulary knowledge by decomposing individual
words into lower level units, for example breaking down the
sounds of the words to capture phonemic level information.
Second, we consider representations that aggregate word
knowledge, for example aggregating latent space vectors to
capture a multidimensional description of the words a child
knows.

This leads to six models.

1) CDI child feature model-based demographic information
of the child.

2) CDI word model based on the CDI vocabulary report of
a child’s productive vocabulary.

3) Semantic model based on the semantic features of partic-
ular words in the child’s vocabulary based on the McRae
feature norms [24].

4) Phonology model which considers the child’s phonolog-
ical composition of their productive vocabulary.

5) CDI label model which captures the production of words
within particular categories as labeled on the CDI.

6) Word2Vec representing the child’s productive vocabu-
lary as a combination of vectors in a high-dimensional
linguistic space.

Finally, we construct ensemble models as a way to explore
whether the types of language representations are redun-
dant or whether the various representations increase model
predictability. We further motivate these representations below.

A. Lexical Knowledge and Input Representations

In our first simulation experiment, we explore whether
vocabulary knowledge is helpful in predicting future language
learning. To this end, we train two neural network models,
one that only has access to information related to the child’s
developmental stage and another neural network with the addi-
tional information as to the specific words on the CDI that are
currently in the child’s vocabulary. We call the demographic
model the CDI child feature model. This model, with a total
of six features, includes the child’s age (both at time of CDI
collection and time at CDI prediction), vocabulary size, sex,
number of visits to the Colunga Laboratory, and CDI per-
centile. This model is the simplest model and contains standard
information researchers usually use to assess a child’s lexical
knowledge and approximate their language ability.

We create the CDI word feature model by combining the
features in the child model and a 677 binary word vector indi-
cating if the child reportedly produces each specific word on
the CDI or not. It is not clear that knowing the child’s current
productive vocabulary will outperform the child model which
has access only to the child features but learns via training on
other snapshots the general trend of the order in which words
are acquired, as there is much more individual variability in
the words a specific child knows. The variability may wash
out meaningful signals from which the neural network would

learn. In fact, previous work on logistic regression models
found that the child-features outperformed a model based on
the individual words the child knows [2]. In the neural network
approach, we explore this question again, asking whether the
content of the child’s vocabulary improves model accuracy in
predicting future language learning.

Intuitively, it is also possible the CDI word-feature model
will be the best performing model. The neural network has
access to input that may allow for the learning of individ-
ualized trajectories for each word, capturing both temporal
dependencies (like boat is usually learned later than car) and
relational dependencies (such as red is usually learned in rela-
tion to blue). Further, the neural network model, even with
only one hidden layer, has internal states that may allow the
model to aggregate this information in useful ways, increasing
predictive accuracy. Alternatively if there is systematicity in
word learning at a level different than the individual words,
the predictability of this model may be less than other vocab-
ulary representations. For example, if the number of animal
words a child knows is important for predicting future learn-
ing of animal words, this word-level model may perform less
accurately than a model that clusters words based on semantic
or syntactic categories.

Turning to our final question, we explore how representing
lexical knowledge in different ways may affect the predictabil-
ity of future language learning. Here we introduce a few
representations that consider language knowledge at a differ-
ent scale than individual words. We consider two classes of
representations that: 1) break down the words into specific
features and 2) those that aggregate the words into categories
or higher level representations. We choose this perspective as
a means to assess whether the neural network can more accu-
rately predict future word learning from lower-level features or
more high-level abstract information about a child’s lexicon.
This may help direct future developmental research focused on
understanding the role of different kinds of linguistic features
that may influence early lexical learning.

We first consider two ways of representing the child’s
current vocabulary in a more fine-grained way—one based
on semantic features, and the other based on phonological
information. We considered the McRae feature norms [24]
as an approximation of features related to concrete nouns
that might bolster early lexical acquisition. These norms
were collected based on adult judgments in which individuals
were asked to list features of concrete nouns. Features were
aggregated to capture general types of features such as tax-
onomic and encyclopedic features (e.g., taste, animacy, fact,
and description) [1]. We use the McRae features (e.g., planes
have wings) and the number of each type of feature (e.g.,
number of taxonomic features of a plane) as input to the
neural network. The McRae feature vector representation is
30 continuously valued input features from the McRae fea-
ture dataset (and include word features such as word length,
binary vector representing whether a word has the feature,
number of taxonomic features, etc.). This particular represen-
tation only overlaps with about 200 of the 677 CDI words,
namely the concrete nouns. To approximate the whole vocab-
ulary knowledge of the child, we consider the average of the
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individual features of the child’s productive vocabulary assum-
ing that word is in the McRae feature data set. Even though
the input representation is only based on nouns, we still eval-
uate the model on the prediction to the whole set of CDI
words. We call this representation Semantic. Because a child
may have multiple words that share a specific feature, we
aggregate together all of the individual McRae feature vec-
tors for all words that the child knows in order to represent
the child’s vocabulary knowledge. Previous work has found the
McRae representation has minimal predictability in accounting
for acquisition of young children using network analysis [16].
Here we test the usefulness of this representation within a
neural network model.

We then consider the phonemic composition of individual
words. Past work shows the sounds of words play a signifi-
cant role in learning [31], [32] and that computational models
can capture this effect [34]. Here we consider the individual
words a child produces and construct a vector representation
of how many times a given phoneme appears in the child’s cur-
rent vocabulary. IPA transcription is done using lingorado.com.
For words with multiple transcriptions, we consider the form
related to the American accent and/or the most common tran-
scription. We took an approach of broad transcription, ignoring
subtle and dialectical variants. In total, we consider 37 differ-
ent phonemes (including diphthongs). Each word is a vector
representation of the 37 phonemes indicating the count of the
number of times each phoneme appears in the word. Each
word is aggregated together in order to represent the whole
(CDI) vocabulary of the child. Research related to phonolog-
ical importance in early learning suggests there is a strong
effect of word onset and word rhyme [14] but other work
has instead suggested phonemic awareness is a better predic-
tor [17]. While this approach of modeling acquisition with
neural networks could provide some insight to this debate, for
this paper we consider only phonemic content and ignore loca-
tion of the phoneme in the word. We call this representation
Phonology.

To represent the aggregated lexical knowledge, we first con-
sider a measure of categories such that input to the neural
network includes the number of items in a particular cate-
gory that the child knows. On the CDI form itself, words are
classified into 22 different linguistically informed groups, cap-
turing semantic themes such as “animal,” and “people,” and
grammatical classes like “action words,” and “helping verbs.”
There is also a class that contains sound effects, including
words like “owie” and “woof.” Using these classes, we rep-
resent the child’s current vocabulary as counts of the number
of words the child produces from each class. Each class does
not have equal representation in the CDI and we do not nor-
malize by the size of the class. Instead, we let the network
learn both frequency of each class and predictability of that
class in future language learning simultaneously. This repre-
sentation suggests what word a child learns next is related to
the collective categories of words the child knows now. For
example, this model may more easily pick up on a child’s pref-
erence for learning food words. This preference could be due
to specific interests of the child [9], the the language input
the child receives from the parent [35], or other features of

the environment. We withhold judgment as to what aspects
of learning might motivate the accuracy of this model, testing
instead whether or not this type of vocabulary representation
can capture future learning language as well as or better than
the CDI child model and the other models we consider. We
consider this to be the CDI label representation.

For our final representation, we consider an aggregate
representation that has been particularly useful in modeling
adult language. Word2Vec uses a large corpus of data to
build up a rich representation of words [26]. We explore
the use of this representation to capture child language
acquisition. Using the Word2Vec algorithm, which considers
co-occurrence frequency of words and the neighborhood of
the word in text/speech, we constructed a 200-dimensional
vector representation of nearly all words in the CDI using a
Word2Vec representation trained on a large GoogleNews cor-
pus. We assume this is an aggregate representation rather than
a decomposition because Word2Vec requires co-occurrence
information as well as information about those word’s nearby
contexts, resulting in words that have both context and rela-
tional information. Vector representations of compound words,
like peanut butter, are constructed by averaging the individual
representations of the component words. Natural language pro-
cessing models using Word2Vec representations have found
syntactic, co-occurrence, semantic, and even phonological
information embedded in the complex vector representa-
tion [26]. We consider this representation as input to the neural
network under the assumption it captures the complexity and
relationships of the language children eventually learn. We call
this input representation Word2Vec.

We believe that by extending the representation of each
word to a vector representation, rather than a single value,
the model will more accurately capture the language learn-
ing of individual children. We also suspect that some of these
representations will fail to account for language acquisition.
This failure may suggest features which are not readily avail-
able to young children. One additional consideration of these
representations is how to aggregate the word specific vec-
tors to accurately represent a child’s holistic productive (CDI)
vocabulary knowledge. We consider both averaging and sum-
ming the individual word vectors. In the case of averaging,
vocabularies are size-invariant and have the same relative
activation across all children and age. When summing the
individual vectors, information regarding the child’s age and
vocabulary size is indirectly measurable based on the activa-
tion level since larger vocabularies will have more instances
of each feature (e.g., the phoneme I is more frequent in
larger vocabularies). Beyond the method of aggregation, we
also consider whether we see an improvement in predictabil-
ity when we include the child specific features of the CDI
child model. We consider both a model with and without
the child features because many features are highly correlated
with child demographic information. With limited data, the
high correlation among features can negatively affect model
performance.

All in all, we construct four different variants for each
feature representation. One averages the individual word rep-
resentations and one sums the word representations. We also
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Fig. 2. Input representations to the neural networks with different methods
of aggregation for a child. Top row represent summing the individual word
vectors in the child’s vocabulary, and bottom row indicates averaging individ-
ual word specific vectors. The x-axis indicates CDI time points. Lighter color
indicates higher activation.

consider the effect of adding in the child features to each of the
input representations. We compare the performance of these
models to the CDI features directly. In practice, these mod-
els contain different amounts and types of information. Fig. 2
visually represents the vocabulary of child under the input vari-
ants discussed above. The top row assume individual word
representations are summed, while the bottom row illustrate
the averaging of word representation for each child. The age
of the child at the time of the CDI is indicated along the x-
axis. Words are roughly sorted based on parts of speech (e.g.,
noun, adjectives, and verbs).

V. EVALUATION

We first evaluate models based on their performance in
terms of minimizing negative log-likelihood (llk) error on the
validation set. Error is computed only for words that were
unknown by the child at the beginning of the snapshot, thus
we do not penalize the model for incorrectly predicting that
known words stay known. Once network architecture is opti-
mized for each representation, we select a single model to
investigate. Only after fixing the network architecture and
hyper-parameters, which are chosen via cross-validation, do
we consider the withheld test set. The test set includes unseen
children and all their respective CDI snapshots.

We evaluate performance by averaging the negative llk error
of all predictions. Note, this more heavily penalizes the vocab-
ulary snapshots of children with smaller vocabularies as we
only predict unknown words but gives us more insight into
the ability of the model to predict learning. We also esti-
mate predictive accuracy based on percent overlap and receiver
operating characteristic (ROC) measures. Percent overlap mea-
sures the overlap between the k words reported as learned
by the child and the k¥’ words that are predicted as most
likely to be learned by the model. The percent overlap mea-
sure approximates how accurate the model is at correctly
predicting which words are learned but does not consider cor-
rect predictions of words that are not learned. We report the
median percent overlap across children. ROC curves compute
the tradeoff between true positives and true negatives as the
cutoff for converting probabilities into learned and unlearned
varies. To capture model performance in relation the ROC
curve, we present the area under the ROC curve (AUC) as

well as summary measures of accuracy and discriminabil-
ity (d-prime). We assume for both accuracy and d-prime the
threshold is the point in which learning events are predicted
with equal frequency to what is observe within the particular
CDI learning snapshot. Also included is the #-statistic from a
paired t-test on average llk of the specific model compared
to the CDI child model for the unseen CDI snapshots in the
test set.

Accurately predicting individual word learning has many
applications. But simple predictive assessment may mask
developmental changes. For example, assume children attend
to phonological features early in language learning only then
to attend later in development to semantic features. We would
then expect the phonological feature neural network to be
particularly adept at predictions of young children or chil-
dren with small vocabularies. We would also predict semantic
neural networks to capture changes in productive vocabular-
ies of older children with higher accuracy. Thus, we consider
performance variability related to the child’s language ability,
age, and vocabulary size.

Just as we consider the effect of performance on individual
children, we can also compare performance across individ-
ual words. It is possible that the representation based on the
Semantic feature norms [24] will be extremely accurate at
predicting the acquisition of concrete nouns but generalize less
well to action verbs or abstract nouns. We investigate this by
considering the performance of models based on the average
age at which a word is learned. Because earliest learned words
are often concrete nouns [12], we might expect the models
with semantic information to perform best early in devel-
opment. Further, if certain words are predominantly learned
by children of a certain age, and other words are learned
based on individual differences, we can expect overall accu-
racy differences when considering individual word acquisition
patterns [20].

We also consider ensemble models where we combine
the individual predictions of the neural networks to increase
predictive accuracy. We aim to further capture what types of
vocabulary representations are most useful in predicting future
lexical acquisition. We describe these ensemble models after
discussing the results and performance of the current neural
network models mentioned above.

A. Baseline Performance

Negative 11k is a useful and efficient metric for training neu-
ral networks; but as a measure, it can be difficult to interpret.
To understand performance of these neural network models,
we orient the readers by introducing a few llk scores for com-
parison. If the model always returned 0.5 as the probability of
learning a word, the average llk score of predictions would be
0.631. If we condition on words such that the model returns
the probability of learning a given word proportional to the
empirical data, the result is a llk score of 0.496. We can fur-
ther improve this basic prediction by conditioning on the age
of the child. Here we can use two independent predictions.
One is from the published CDI norms [8] which indicate the
proportion of children at a given age who reportedly produce
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TABLE 11
NEURAL NETWORK PERFORMANCE OF SI1X DIFFERENT MODELS
model [ Ik % overlap AUC acc d prime t-stat.
CDI child 312 36.9 816 .840 167 —
CDI words | .311 36.2 816 .843 167 7.4
Semantic 314 36.3 809  .837 165 -7.8
Phonology 312 37.1 814 .840 167 -8.3
CDI label .307 37.6 820  .843 170 20.5
Word2Vec 312 37.3 815 .841 .166 6.4

a specific word. We can also estimate the learning rate of indi-
vidual words directly from the data. Using the published CDI
norms and the empirical age of acquisition results, we get a llk
of 0.456 and 0.453, respectively. Values closer to zero indicate
better model performance.

Our final (informed) baseline 1lk measure uses logistic
regression models for prediction. Training an individual logis-
tic regression for each word, we predict, given a child’s current
vocabulary, if the child learns a specific word. Aggregated
to predict the whole vocabulary of a child, we find a neg-
ative llk score of 0.391. See [2] for more detail on the
modeling framework and results. Any model that contains use-
ful information to word prediction must clearly outperform
this logistic regression model by attaining a score smaller
than 0.391.

All neural network models outperform logistic regression
models. Of the models tested, the model with the worst
performance still had a negative llk error of 0.32. With this
result we can now compare neural network models directly.
As mentioned above, all models were individually optimized
for learning rate, batch size, number of hidden units, momen-
tum, and learning rate decay. We ignore the specifics of
optimization other than to remind the reader that we did step-
wise optimization for each free model parameter and for each
model individually. We first consider the CDI-based models
and then we turn to the feature-based models.

B. CDI Models

As discussed in Section IV-A, we construct and train a
global Child model that includes only the child features as our
baseline model. We then compare performance of this model
to the Word model which includes the individual vocabulary
words that the child can produce for a total of 683 features.
In Table II, we report summary performance of these CDI
representations by average negative 11k for all 171 snapshots
(17 children) in the test data. Table II shows that the CDI
word representation performs better than the CDI child model
in 1k, and accuracy which is near 84.3%, suggesting that
knowing the individual words a child knows increases over-
all performance of our predictive models. However, looking
at aggregate performance, it is difficult to capture where the
gains of the word-based model are. For example, it is possible
that this model is a better model for every child in the test-
ing data set. Alternatively the CDI word model may see gains
for a sub-population of learners or snapshots capture specific
populations of learners, performing better for a subset of the
snapshots explored. To examine this idea, we turn to Fig. 3.
In this figure, we plot the difference between the CDI child
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Fig. 3. Performance differences of the CDI word model compared to the

CDI child model. Zero means the models perform equally. Histogram is
the frequency of an individual snapshot being better fit by the CDI child
model (pink) or word model (green). Data is sorted by the child’s age, then
vocabulary size, and percentile.

model and the CDI word model along the x-axis. We then
consider features of the child along the y-axis. From left to
right, we order snapshots by the age of the child, vocabulary
size, and percentile. We normalize the x-axis so positive val-
ues indicate that the CDI word model is performing better and
negative values indicate that the CDI child model is perform-
ing better. We include a density plot (right of the scatter plot)
to indicate the number of snapshots that are best fit by each
model for the range of child features we consider.

We find that the CDI Child model performs on par with
the CDI model for children with higher percentiles but not as
well for children with small percentiles. This result is in line
with other work that finds higher variability and more hetero-
geneity in the lexicon of children with lower CDI percentiles,
e.g., [10]. In practice, this means our CDI word specific model
has the greatest improvement over the baseline CDI child
model for children who have a CDI lexicon that is smaller than
average. The fact that the CDI word model shows strongest
gains for a population that is known to be variable in their
learning strategies suggest that this data driven approach can
leverage meaningful trends to predict future acquisition. In
future work, we aim to explore what these trends are and
if they can provide direct insight into different strategies or
environments that might impact a toddler’s language ability.

C. Feature-Based Models

While the individual words a child knows as recorded by
the CDI are useful in predicting the words the child will learn
next, we are also interested in whether the CDI is the best
representation of the content and structure of a child’s cur-
rent productive vocabulary. It may be that by representing a
child’s vocabulary as an aggregate set of word-feature repre-
sentations, we can outperform the CDI models. In this section,
we discuss the resulting model performance when using our
Semantic features, Phonology, CDI label, and Word2Vec rep-
resentations. As mentioned above, we also consider whether
averaging or summing the individual word features produces
the best predictions. We also briefly discuss whether adding
additional child specific information such as age improves
performance of the language representations.

We find different aggregation processes of the vocabulary,
even within a specific representation, have large effects on the
ability for a model to predict future lexical acquisition. Across
all representations, there is no best aggregation method. Two
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of the models (the Semantic feature norms and the CDI label)
performed significantly better when including child specific
features, suggesting that the child information of age, per-
centile and vocabulary size are not independently useful for
some representations. The other models, including phonol-
ogy, saw no reliable improvement when including the child
features.

The fact that there are some representations that do not
benefit from the inclusion of child level features may suggest
that there are a subset of words that are learned systemati-
cally [6], [15] which can be used to mark development and
other child specific features, resulting in a redundancy between
vocabulary representations and child features. Additionally,
half of the representations were most predictive when the indi-
vidual word representations were summed across the whole
productive vocabulary. The remaining showed increased accu-
racy when the individual word features were averaged. We find
that when the features are averaged, child features increase
accuracy further highlighting the fact that summing the fea-
tures preserves information about the child’s age and poten-
tially about their language ability as vector “activity” increases
as vocabularies grow. Table I details what models used the
child features as well as what models were averaged (as
opposed to summed) in order to aggregate the individual repre-
sentations of the words. For the rest of our analysis we choose
the best aggregation model for each vector representation of
the lexicon.

We now turn to the performance of the models we classified
as being a decomposition of the vocabulary knowledge—the
Semantic feature norms and Phonology. In Table II, we see
that the Phonology reaches comparable performance with the
child feature model even though this model has no direct
information about the words in the child’s vocabulary or fea-
tures of the individual learner but only information about the
phonemic composition of the words in the child’s vocabulary.
However, the paired #-test suggests that this model performs
worse than the child feature model on a kid-by-kid measure
as indicated by a large negative t-statistic. The decrease in
predictive performance of the phonemic model when com-
pared to the CDI word model suggests that children are not
only learning words based on their ability to pronounce and
parse the phonemes. While it is a necessary condition for chil-
dren to understand the word they are learning to produce,
phonemic production is not enough to predict what words
a child will learn next. While not a surprising result, the
performance loss of this representation compared to that of the
CDI word model validates the ability of model performance
to provide an indirect means to quantify the usefulness of
various representations in predicting future lexical learning of
individual children.

We also see that the neural network using the Semantic
feature representation is unable to outperform the child fea-
ture model. Previous work has found that the feature norms
themselves do not adequately capture the relevant features to
small children (e.g., [16]). This result is not unexpected as the
McRae feature norms include features, such as encyclopedic,
that are learned much later in development [24]. We summa-
rize performance of these decompositional models in Table II.
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Fig. 4.  We consider difference of performance of the CDI word model as

compared to the CDI child model. Zero means the model perform equally
well. The histogram represents the frequency of an individual being better fit
by the CDI child model (pink) or the CDI word model (green). From left to
right, and along the diagonal axis, the data is sorted by vocabulary size and
percentile.

In general, these results suggest that considering words, rather
than their constituent parts is more useful in predicting future
language acquisition trajectories.

We now consider representing the vocabulary knowledge
through aggregating individual words into a higher-level rep-
resentation of vocabulary knowledge. Here we consider the
category labels from the CDI in our CDI label model and the
Word2Vec representation of the child’s vocabulary. Both of
these models outperform the CDI child model on most mea-
sures and has similar performance as the CDI word feature
model (see Table II). In fact these models tend to outper-
form the CDI word model, implying some representations of a
child’s vocabulary can provide additional information, beyond
predictions based on the individual words a child knows. Our
findings suggests that we gain improvement in predictabil-
ity of individual acquisition when the model has access to
category information or more general information about the
words a child knows. The improvement of these aggregated
vocabulary representations implies that what is most impor-
tant to predicting future word learning is what categories and
linguistic structure the child has in their productive vocab-
ulary rather than the individual words the child currently
knows.

Collectively, the results suggest the CDI label model and the
Word2Vec model increase predictive capabilities of our models
to accurately predict what words are likely to be learned next
by specific children. We consider if this is conditional on a spe-
cific point in development or specific words in Fig. 4. Here
we normalize such that zero indicates that the child model
is the best of the language feature models we consider. We
then plot the difference from zero and show the density of
the best performing model as a function of vocabulary size
and age. Unlike the previous plot, we do not consider each
model compared to the CDI child model but instead compare
all jointly. This masks the fact that some models (particularly
the CDI label model) outperform the CDI child model much
more frequently than other models, but instead highlights the
statistics of the children in which the CDI child model consis-
tently outperforms other models. As before, the child model
does well for children who are in general good at learning
language. This suggests that the CDI child model is learning
only high-level trend and where there are only a few words
left to learn the high-level trend is predictive. We also see
here that the Word2Vec model and the CDI word model are
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TABLE III
PERFORMANCE OF ENSEMBLE MODELS ON TEST DATA

model ‘ Ik % overlap AUC acc  d prime
Avg. Ens. .307 36.1 .820  .843 .169
Wgt. Ens. .306 36.5 821 .843 171
Word Vote | .310 36.7 817 842 .168

particularly good for children with low percentiles and chil-
dren with small vocabularies. This suggests that the Word2Vec
representation, or the individual words on the CDI may be
capitalizing on systematicity in early language learning that is
not easily interpreted by humans, a finding that requires more
investigation.

D. Ensemble Models

The above results help us to capture the role of a particular
type of language representation in predicting future language
learning. Now we explore whether the information contained
in these predictions are independent or redundant. To explore
this question, we construct ensemble models that weigh var-
ious model predictions in hopes of training a more powerful
predictive model. We now consider a few ensemble models
based on the individual predictions of the four language rep-
resentations, models 3)—6). We also include the CDI child and
CDI word models in our ensembles. We note that it is possible
to train neural network models that include multiple represen-
tations as input, but we instead focus on averaging the final
predictions.

The most basic ensemble model simply considers each of
the best performing models equally. In this Avg. Ensemble
model, we combine prediction across the CDI child and CDI
word model as well as the language representation models
3)-6). The performance of this ensemble model, as reported
in Table III is comparable to the CDI child model. This
ensemble does not outperform the best input representations
discussed above. The fact that this ensemble model does not
outperform the CDI child model suggests that the types of
information each representation is using to predict are not
equally relevant and the success of certain models is effec-
tively canceled out by the poor performance of other models.
The second Wgt. Ensemble uses the combined training data
and validation data to learn the optimal contribution of each
model. This learned weighting is then applied to the test data.
Table IIT shows that this model performs better than simply
averaging all predictions together but still does not outper-
form our best single feature model of CDI label. Looking
at the weighting of the individual representations, this model
suggests that the vocabulary representations that are most
useful are the CDI label and the CDI word representations,
accounting for 32% and 67% of the total estimates, respec-
tively. The CDI child model, the Semantic feature model, and
the Phonology model are almost completely ignored in the
optimal weighting. Even though this ensemble model is not
more predictive than the best performing single feature model,
the weighting of each model indicates what features of lan-
guage learning are most predictive of future lexical acquisition.
The fact that the CDI label model and the CDI word model

are significant contributors to the final predictions suggests that
knowing the child’s vocabulary as well as higher level cate-
gory information is useful in predicting future acquisition. We
believe that this ensemble model could be made more power-
ful with more data and suggest that researchers interested in
modeling acquisition consider both category information and
word level information.

The method of combining our individual neural network
models affects predictive ability. Surprisingly, many of these
models, especially the models that take into account general
features of the child, fail to perform as well as the CDI word
feature model, suggesting that the information contained in
these representations may be redundant or have less predictive
information as compared to the CDI word model. We find that
the Wgt. Ensemble model performs the best of our ensembles.
This weighted ensemble model considers the CDI word feature
model most heavily but also weighs the CDI label represen-
tation. These results suggest that there may still be unique
information in the some of representations that could aid in
predictions of individual word acquisition of unseen children
but that due to limitations in data availability or model archi-
tecture these ensembles are not able to easily capitalize on
this information. The similarity between the weighted ensem-
ble model and the average ensemble model suggests that the
benefit of these various representations can be accessed nearly
as simply by averaging predictions of all models as opposed
to optimizing current model weights. In the future we aim to
further investigate how to integrate these different representa-
tions to build a more accurate and robust predictive model of
lexical acquisition.

VI. CONCLUSION

We find evidence that developmental changes as captured
by child level features and the individual words a child knows
now have an impact on which words a child will learn next.
Individual words in a child’s vocabulary are informative in
predicting future vocabulary growth. The CDI word model,
which contains the words produced by the child reliably out-
performed the CDI child feature model. This confirms our
intuition that the individual words a child knows contains rele-
vant information beyond that provided by knowing the child’s
age and vocabulary size. This is an interesting result when
placed in the context of current diagnostic and intervention
techniques in clinical practice. Many vocabulary assessment
tools rely only on information pertaining to the size of the
child’s vocabulary, with little attention to the specific words
known by the individual learner. The predictive accuracy of
our network models suggest that we can improve our assess-
ment of children’s development by looking at the individual
items in a child’s productive vocabulary. The success of the
CDI label model also suggests that the category structure of
a child’s vocabulary may be important to understanding their
language learning ability.

These modeling results additionally suggest the need to con-
sider differences in learners. The content of the vocabulary
significantly improves our ability to predict future acquisi-
tion, suggesting that an individual’s vocabulary has relevant
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and predictive information about the type of learner—and the
learning trajectory—of a particular child. While we remain
agnostic as to the nature of the relationship between known
words and future learning, we find strong evidence of the
importance of the current vocabulary both in the CDI word
feature model and the CDI label model. However, Semantic
features (capturing semantics) and the Phonology model per-
formed significantly worse than the CDI child model possibly
because these representations do not aggregate the child’s cur-
rent vocabulary knowledge in a meaningful way. In later work,
it may be interesting to consider why these models fail. For
example, the chosen phonological representation may fail to
capture features relevant to young learners, such as phonemic
onset, rhyme, sound similarity, or the difficulty of pronouncing
individual phonemes [13], [14], [17].

More interesting than the failure of individual represen-
tations is the feature representations that perform on par
with, or better than, the individual word representations.
The feature aggregation using the CDI label or word class
labels is reliably the best performing model. This suggests
knowing something about the category of words a child
knows can help in predicting acquisition of individual words.
This representation is possibly capturing important features
in the lexical knowledge of young learners. The Word2Vec
model, which did not include the child features in the neu-
ral network representation, performs on par with the CDI
child model, suggesting that representing the child’s vocab-
ulary knowledge as various features that are themselves
difficult to interpret still allows for the model to learn
and that these vector representations can capture all of the
information available in the high-level information about the
learner even though the information available to the neural
network excludes this information. Future work should con-
sider how this Word2Vec representation could be tailored to
capture information that may be more relevant to our young
learners—for example instead of training on the GoogleNews
corpus, we could train on children’s books or child-directed
speech.

The performance of these aggregated knowledge represen-
tations begs further investigation—is the success of these
representations the result of the model’s ability to capture
different learning styles which allow for easy detection of a
learner’s trajectory? Or are these representations abstracting
vocabulary content in a way that represents language knowl-
edge from the perspective of a toddler in a more useful way?
Capturing the learning trajectory may be the most reliable
prediction of future growth, allowing our models to accurately
predict future acquisition and provide additional insight into
important differences in learning trajectories. Classification of
these trajectories and different learning styles may also be
possible. These aggregated lexical knowledge models perform
especially well for a particular group of children commonly
known as late talkers, children who know fewer words than
their age-matched peers, raising important future directions
in the diagnosis and intervention design for children with lan-
guage learning difficulties. In future work, we plan to use these
representations to model the language trajectory as opposed
to individual word learning.

Previous work has suggested that children with lower CDI
percentile have more variance in the words they learn than
children who have higher CDI percentiles [3], [6], [15], [37].
An implication of these results is that children who are having
more difficulty with language have widely variable learning
strategies. Given this idea, the success of some of the mod-
els for this population of late talkers is hopeful. It offers a
model to predict future word learning and may also suggest
what types of attentional mechanisms may differ between late
talkers and their peers. This paper shows that we can quantify
differences in the vocabulary of these children in ways that aid
in prediction of future language learning. We hope to use this
insight to explore the attentional and learning mechanisms that
result in learning differences between these groups in future
work.

By considering the developmental aspects inherent in this
type of modeling, we can make predictions (and evaluate those
predictions) of how a specific child’s vocabulary will grow.
This type of modeling approach will allow us to capture and
explain the effect of certain features in language learning as
related to development, and in turn, might allow us to dis-
tinguish late talking children who will catch up to their peers
from those late talking children who will not, allowing for tar-
geted and early interventions. Given that the neural networks
are able to predict future acquisition with some degree of accu-
racy, we can begin to predict further than one month, assessing
language ability throughout the course of early development.
We can also use these different language representations to fur-
ther tease apart different types of learners and the acquisition
process of late- and typically developing children.

It is still an open question whether the performance of these
models can be increased with more data—which is time inten-
sive and challenging to collect. If instead we can use insights
from machine learning to direct researchers to specific lexical
features of relevance, we may improve the ability of develop-
mental psychology to expand their understanding of learning
without having to do exploratory data-intensive investigations.
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